1000 | Browse the Faculties | Top 10s | Advanced Search | My Details | About F1000 | Faculty Member List

Send page by email

Contribution of Distal-less to quantitative variation in butterfly eyespots.

Beldade P, Brakefield PM, Long AD

Nature 2002 Jan 17 415(6869):315-8 [abstract on PubMed] [related articles]

[order article] S-F-X

Selected by | Greg Gibson / David Stern / Patricia Simpson

First evaluation 24 Jan 2002 | Latest evaluation 18 Feb 2002

Relevant Sections

Faculty Comments

Faculty Member

Greg Gibson

North Carolina State University, United States DEVELOPMENTAL BIOLOGY

New Finding

Comments

This paper supplies one of the first demonstrations that quantitative variation attributable to a specific gene contributes to morphological variation of adaptive significance. Previous studies had shown that the gene distal-less is required for butterfly eyespot determination, and that there is genetic variation for this trait. The authors provide strong evidence for linkage of alleles of distal-less to eyespot size in a series of backcrosses between divergently selected lines of Bicyclus anynana.

Evaluated 18 Feb 2002

cite this evaluation

David Stern

Princeton University, United States DEVELOPMENTAL BIOLOGY

New Finding

This paper provides the first link between quantitative variation in butterfly eyespots, which is the source of evolutionary change, and a particular developmental gene. The contribution of variation at the Distalless locus indicates that highly conserved developmental genes may contribute to naturally occurring phenotypic variation. This study points the way towards a deeper understanding of the links between evolution and development.

Evaluated 30 Jan 2002

cite this evaluation

Patricia Simpson

University of Cambridge, United Kingdom DEVELOPMENTAL BIOLOGY

New Finding

This paper demonstrates that DNA polymorphisms at the Distal-less gene contribute to the quantitative variation observed in the morphology of eyespot colours in a butterfly. This provides a link between genetic pathways involved in development and genes contributing to quantitative variation.

Evaluated 24 Jan 2002

cite this evaluation